Stat langague

09 Mar 2023

Statistical language models have had engineering success, but that is irrelevant to science. Accurately modeling linguistic facts is just butterfly collecting; what matters in science (and specifically linguistics) is the underlying principles. Statistical models are incomprehensible; they provide no insight. Statistical models may provide an accurate simulation of some phenomena, but the simulation is done completely the wrong way; people don’t decide what the third word of a sentence should be by consulting a probability table keyed on the previous two words, rather they map from an internal semantic form to a syntactic tree-structure, which is then linearized into words. This is done without any probability or statistics. Statistical models have been proven incapable of learning language; therefore language must be innate, so why are these statistical modelers wasting their time on the wrong enterprise?
Is he right? That’s a long-standing debate. These are my answers: I agree that engineering success is not the goal or the measure of science. But I observe that science and engineering develop together, and that engineering success shows that something is working right, and so is evidence (but not proof) of a scientifically successful model. Science is a combination of gathering facts and making theories; neither can progress on its own. I think Chomsky is wrong to push the needle so far towards theory over facts; in the history of science, the laborious accumulation of facts is the dominant mode, not a novelty. The science of understanding language is no different than other sciences in this respect. I agree that it can be difficult to make sense of a model containing billions of parameters. Certainly a human can’t understand such a model by inspecting the values of each parameter individually. But one can gain insight by examing the properties of the model—where it succeeds and fails, how well it learns as a function of data, etc. I agree that a Markov model of word probabilities cannot model all of language. It is equally true that a concise tree-structure model without probabilities cannot model all of language. What is needed is a probabilistic model that covers words, trees, semantics, context, discourse, etc. Chomsky dismisses all probabilistic models because of shortcomings of particular 50-year old models. I understand how Chomsky arrives at the conclusion that probabilistic models are unnecessary, from his study of the generation of language. But the vast majority of people who study interpretation tasks, such as speech recognition, quickly see that interpretation is an inherently probabilistic problem: given a stream of noisy input to my ears, what did the speaker most likely mean? Einstein said to make everything as simple as possible, but no simpler. Many phenomena in science are stochastic, and the simplest model of them is a probabilistic model; I believe language is such a phenomenon and therefore that probabilistic models are our best tool for representing facts about language, for algorithmically processing language, and for understanding how humans process language. In 1967, Gold’s Theorem showed some theoretical limitations of logical deduction on formal mathematical languages. But this result has nothing to do with the task faced by learners of natural language. In any event, by 1969 we knew that probabilistic inference (over probabilistic context-free grammars) is not subject to those limitations (Horning showed that learning of PCFGs is possible). I agree with Chomsky that it is undeniable that humans have some innate capability to learn natural language, but we don’t know enough about that capability to rule out probabilistic language representations, nor statistical learning. I think it is much more likely that human language learning involves something like probabilistic and statistical inference, but we just don’t know yet.
I said that statistical models are sometimes confused with probabilistic models; let’s first consider the extent to which Chomsky’s objections are actually about probabilistic models. In 1969 he famously wrote:

But it must be recognized that the notion of “probability of a sentence” is an entirely useless one, under any known interpretation of this term. His main argument being that, under any interpretation known to him, the probability of a novel sentence must be zero, and since novel sentences are in fact generated all the time, there is a contradiction. The resolution of this contradiction is of course that it is not necessary to assign a probability of zero to a novel sentence; in fact, with current probabilistic models it is well-known how to assign a non-zero probability to novel occurrences, so this criticism is invalid, but was very influential for decades. Previously, in Syntactic Structures (1957) Chomsky wrote:

I think we are forced to conclude that … probabilistic models give no particular insight into some of the basic problems of syntactic structure.

In the footnote to this conclusion he considers the possibility of a useful probabilistic/statistical model, saying “I would certainly not care to argue that … is unthinkable, but I know of no suggestion to this effect that does not have obvious flaws.” The main “obvious flaw” is this: Consider: I never, ever, ever, ever, … fiddle around in any way with electrical equipment. She never, ever, ever, ever, … fiddles around in any way with electrical equipment.

  • I never, ever, ever, ever, … fiddles around in any way with electrical equipment.
  • She never, ever, ever, ever, … fiddle around in any way with electrical equipment. No matter how many repetitions of “ever” you insert, sentences 1 and 2 are grammatical and 3 and 4 are ungrammatical. A probabilistic Markov-chain model with n states can never make the necessary distinction (between 1 or 2 versus 3 or 4) when there are more than n copies of “ever.” Therefore, a probabilistic Markov-chain model cannot handle all of English. This criticism is correct, but it is a criticism of Markov-chain models—it has nothing to do with probabilistic models (or trained models) at all. Moreover, since 1957 we have seen many types of probabilistic language models beyond the Markov-chain word models. Examples 1-4 above can in fact be distinguished with a finite-state model that is not a chain, but other examples require more sophisticated models. The best studied is probabilistic context-free grammar (PCFG), which operates over trees, categories of words, and individual lexical items, and has none of the restrictions of finite-state models. We find that PCFGs are state-of-the-art for parsing performance and are easier to learn from data than categorical context-free grammars. Other types of probabilistic models cover semantic and discourse structures. Every probabilistic model is a superset of a deterministic model (because the deterministic model could be seen as a probabilistic model where the probabilities are restricted to be 0 or 1), so any valid criticism of probabilistic models would have to be because they are too expressive, not because they are not expressive enough.